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Complex systems approaches for climate data analysis
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Climate: A conceptual view
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non-stationarity: multiple regimes (e.g., glacial vs. interglacial climate), tipping
elements

nonlinearity: complex interrelationships between subsystems, variables, regions,
scales; feedbacks

multi-scale variability: different climate subsystems with distinct time scales of
variability

internal dynamics vs. external forcings (solar/orbital variations, volcanism,
anthropogenic greenhouse gas emissions)
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e generalization of simple one-point statistics to sequences captures information
about dynamics of the observed system

e interdependences between observations made at different times
- existence?
- type (linear, nonlinear)?
- strength and direction?
- characteristic time scales?
- continuous or variable?

Different approaches to time series analysis:

e statistics (linear correlation analysis)

e econometrics (stochastic models based on regression analysis)
o theoretical physics (dynamical systems concepts)
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Applied statistics Dynamical systems

Linear time series analysis, Bifurcations, tipping points,
moments, trends, extremes, phase space concept,...
EOF analysis,...

Data mining Information theory
Automated learning, pattern Binary data representation,
recognition,... entropy and information,

statistical mechanics

oLy o c®sv.

| ‘.P_.I _K T Reik V. Donner, reik.donner@pik-potsdam.de ° \/\/



Applied statistics Dynamical systems

Linear time series analysis, Bifurcations, tipping points,
moments, trends, extremes, phase space concept,...
EOF analysis,...

Data mining Information theory
Automated learning, pattern Binary data representation,
recognition,... entropy and information,

statistical mechanics

Lo o c®sv.

| ; K K - Reik V. Donner, reik.donner@pik-potsdam.de ° \/\/



Classical (linear) time series analysis captures many important (statistical) properties of
data (correlations, power spectra), but:

e relies on the assumption of linear-stochastic processes
e whereas nature is most often nonlinear
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Testing for nonlinearity in time series

Example: Which process is linear, which one nonlinear?
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Testing for nonlinearity in time series

Example: Which process is linear, which one nonlinear?

Uncorrelated random process Logistic map
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Assessing nonlinear interrelationships
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D

linear Pearson correlation: no information on general statistical associations!

low
correlation
coefficient,

high mutual
information
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Basic idea: quantification of contingency table of symbol (joint vs. marginal
probabilities)
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More general: transform time series into discretized representation using abstract
symbols a from discrete (finite) alphabet A

= allows computation of different information-theoretic quantities:

symbolic correlation function

CXY (T) = Z Pa);Y (T)

acA

(measure for general statistical association)

xv (7) = Z (2’)|ng i (T)

X Y
a,beA P
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Classical approach: linear Granger causality

1. Build linear regression models (bivariate AR models)

p p
Xi(t) =) AuyXi(t— )+ ) A, Xa(t — 5) + Eu(t)
j=1 j=1
P P
Xo(t) =) ApXi(t—j)+ Y A Xs(t—j) + Ext)
J=1 j=1

2. Compare variance of error term E, (E,) with and without inclusion of X, (X;) in the
first (second) equation

e [f additional term for X, in equation for X, reduces error: X, Granger-causes X,
 [f additional term for X, in equation for X, reduces error: X, Granger-causes X,
* Practical: are A;,; (A,; ;) significantly different from 0 (e.g., via F test)?
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Multivariate problem: given n>2 variables X,,

X; Granger-causes X; if lagged observations of X; help in prediction X; when lagged
observations of all other variables X, are taken into account (cf. partial correlations)

— Multivariate (conditional) Granger causality

Problems: linearity, stationarity, unobserved variables are not considered

Many extensions:
* Nonlinear Granger causality

* Spectral Granger causality (fraction of total spectral power of X, at a given
frequency f that is provided by X,)

* Transfer entropy: conditional mutual information taking lags into account
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Assessing multi-scale dynamics
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Original motivation: extract dominating variations from spatio-temporal fields of
climate observations records

Linear PCA:
Diagonalization of lag-zero covariance matrix C of multivariate time series (matrix X)

C=X"X with C=U"SU and 3=diag(c’,.,o2)

e Compute correlation matrix of all variables
* Estimate eigenvalues and eigenvectors

e Eigenvectors: additive decomposition into principal components (weighted
superpositions of original variables) with individual variances corresponding to
associated eigenvalues

—> spatial EOF patterns + index/score time series describing magnitude and sign of
individual EOF modes
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Replace individual data “channels” by time-lagged versions of the same time series
= ldentification of distinct temporal variability patterns

Mathematical roots: time-delay embedding

—> Attractors of dissipative deterministic dynamical systems can be approximated
from univariate time series by using “independent coordinates” in terms of time-
shifted replications of the original data

—> Standard tool in nonlinear time series analysis

Relevant information:

* How many “dimensions” (variables) need to be used to model the observed
dynamics? (number of relevant singular values)

 What are the associated relevant variability patterns (associated singular vectors)
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Example: Relevant dimensions of ENSO activity (Ghil et al., 2001)
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Figure 2. Variations of the Southern Oscillation Index (SOI)
between January 1942 and June 1999. Time on the abscissa is

in calendar years, and SOI on the ordinate is normalized by its
standard deviation.
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Widely applicable tool: wavelet analysis

e Straightforward generalization of classical spectral analysis: convolution of
signal with scalable localized oscillatory function (mother wavelet)

* Example: Morlet wavelet - sinusoidal with Gaussian envelope

0.3

~1/4 _iwgn -’ /2

00 Wo(n)=n"e""e

* Discrete wavelet analysis: additive decomposition of time series into
components in logarithmically spaced frequency bands

e Continuous wavelet analysis: filter with central frequency at any desired
periodicity
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Example: wavelet spectrogram of Nino3.4 index (Maraun, PhD thesis, 2006)
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Mutual alignment of two or more (not necessarily regular) oscillatory signals

First described by Huygens in 1673 (synchronization of two pendulum clocks hanging
on the same wooden beam)
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Classical approach for detecting phase synchronization:

1. Define phase variable from data (Hilbert or wavelet transformation, stroboscopic
mapping,...)

b(1) = s(t) + j5() = A0 3(r) = -n—]P.\f.f )4,

2. Compute time series of phase differences between two phase time series
3. Wrap the phase differences to the interval [0,27]

4. Compute suitable statistics on wrapped phase differences (Rayleigh measure,
standard deviation, Shannon entropy)

Alternative to 2-4: compute mutual information between phase time series (Palus
1997)
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Example. Phase coherence between ENSO and Indian monsoon (Maraun & Kurths,
GRL, 2005)
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Idea (Palus, PRL, 2014): combine
e continuous wavelet analysis,

e phase synchronization analysis (decomposition into amplitude and phase
variables) and

* Nonlinear interdependencies (mutual information)

= Unveil cross-scale phase-amplitude (phase-phase, amplitude-amplitude) coupling
in observed time series
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Example: four long-term air temperature records from Central Europe (Palus, PRL,
2014)
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Common approach from neurosciences (spike train analysis from EEG recordings,
Quian Quiroga et al., PRE, 2002) - normalized fraction of temporally close extremes
observed at different spatial locations (EEG electrodes, climate data grid point)
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Various (even more concepts) further extending this approach (e.g., spike train
synchrony), commonly tailored to specific features of neuronal spike trains
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e adaptive “local” definition of event proximity, tailored to events with
approximately constant spacing in time - requires de-clustering in case of

temporally close events

e no analytics, significance testing at most via Monte Carlo methods

Qﬂ

10

c®sy

i

“llll
xllll

Reik V. Donner, reik.donner@ pik-potsdam.de

” ‘s—’éy,ﬁ\\\_,/



Take one of the series as reference and count number of cases in which at least one
event in the other series occurs within in given time window relative to the timing
of the reference event

= Asymmetric property (potential for establishing directionality statements)
= Distinction between “trigger” and “precursor” tests, simple significance tests
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Sign of Anomalies Index SM Regime Status

T— FPAR/ET— VAC, energy-limited wettening, atmospheric control
T+ FPAR/ET+ VAC, energy-limited drying, atmospheric control

T+ FPAR/ET— VAC, transitional drying, land/vegetation control
T— FPAR/ET+ VAC, transitional wettening, land/vegetation control
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Climate data exhibit complex variability features

Classical time series analysis methods are not capable of unveiling these features

Nonlinearity: interdependencies maybe overlooked by linear analyses, use
nonlinear similarity measures like mutual information instead

Multi-scale variability: time-scale decomposition to identify relevant scales, study
interdependence between (oscillatory) components at different scales

Event based interdependency measures: relevance for extreme event and
(discrete) impact studies
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