Complex systems approaches for climate data analysis

Reik V. Donner
Climate: A conceptual view
Climate data: Major issues

non-stationarity: multiple regimes (e.g., glacial vs. interglacial climate), tipping elements

nonlinearity: complex interrelationships between subsystems, variables, regions, scales; feedbacks

multi-scale variability: different climate subsystems with distinct time scales of variability

internal dynamics vs. external forcings (solar/orbital variations, volcanism, anthropogenic greenhouse gas emissions)
Why time series analysis?

- generalization of simple one-point statistics to sequences captures information about dynamics of the observed system
- interdependences between observations made at different times
 - existence?
 - type (linear, nonlinear)?
 - strength and direction?
 - characteristic time scales?
 - continuous or variable?

⇒ characterization/identification of underlying processes

Different approaches to time series analysis:
- statistics (linear correlation analysis)
- econometrics (stochastic models based on regression analysis)
- theoretical physics (dynamical systems concepts)
Exploring the complex systems nexus

Applied statistics
Linear time series analysis, moments, trends, extremes, EOF analysis,…

Dynamical systems
Bifurcations, tipping points, phase space concept,…

Data mining
Automated learning, pattern recognition,…

Information theory
Binary data representation, entropy and information, statistical mechanics
Exploring the complex systems nexus

Applied statistics

Linear time series analysis, moments, trends, extremes, EOF analysis,…

Dynamical systems

Bifurcations, tipping points, phase space concept,…

Data mining

Automated learning, pattern recognition,…

Nonlinear methods

Information theory

Binary data representation, entropy and information, statistical mechanics
Testing for nonlinearity in time series

Classical (linear) time series analysis captures many important (statistical) properties of data (correlations, power spectra), but:

• relies on the assumption of linear-stochastic processes
• whereas nature is most often nonlinear

Linear statistics cannot distinguish between qualitatively different types of dynamics and is therefore not suitable for fully characterizing nonlinear dynamics!
Testing for nonlinearity in time series

Example: Which process is linear, which one nonlinear?
Testing for nonlinearity in time series

Example: Which process is linear, which one nonlinear?

Uncorrelated random process

Logistic map

\[x_{t+1} = F(x_t) = rx_t(1-x_t) \]
Assessing nonlinear interrelationships
Information-theoretic methods

Entropy 2013, 15, 4844-4888; doi:10.3390/e15114844

Review

Statistical Mechanics and Information-Theoretic Perspectives on Complexity in the Earth System

Georgios Balasis ¹·*, Reik V. Donner ²·³, Stelios M. Potirakis ⁴, Jakob Runge ²·⁵, Constantinos Papadimitriou ¹·⁶, Ioannis A. Daglis ¹·⁶·†, Konstantinos Eftaxias ⁷ and Jürgen Kurths ²·⁵·⁸
Nonlinear statistical interdependencies

linear Pearson correlation: no information on general statistical associations!

low correlation coefficient, high mutual information
Mutual information

Basic idea: quantification of contingency table of symbol (joint vs. marginal probabilities)
Symbolic time series analysis

More general: transform time series into discretized representation using abstract symbols a from discrete (finite) alphabet A

⇒ allows computation of different information-theoretic quantities:

- **symbolic correlation function**
 \[C_{XY}(\tau) = \sum_{a\in A} P_{aa}^{XY}(\tau) \]

- **mutual information** (measure for general statistical association)
 \[I_{XY}(\tau) = \sum_{a,b\in A} P_{ab}^{XY}(\tau) \log_2 \frac{P_{XY}^{ab}(\tau)}{P_a^X P_b^Y} \]
Identification of causality from time series

Classical approach: linear Granger causality

1. Build linear regression models (bivariate AR models)

\[
\begin{align*}
X_1(t) &= \sum_{j=1}^{p} A_{11,j} X_1(t - j) + \sum_{j=1}^{p} A_{12,j} X_2(t - j) + E_1(t) \\
X_2(t) &= \sum_{j=1}^{p} A_{21,j} X_1(t - j) + \sum_{j=1}^{p} A_{22,j} X_2(t - j) + E_2(t)
\end{align*}
\]

2. Compare variance of error term \(E_1 \) (\(E_2 \)) with and without inclusion of \(X_2 \) (\(X_1 \)) in the first (second) equation

- If additional term for \(X_2 \) in equation for \(X_1 \) reduces error: \(X_2 \) Granger-causes \(X_1 \)
- If additional term for \(X_1 \) in equation for \(X_2 \) reduces error: \(X_1 \) Granger-causes \(X_2 \)
- Practical: are \(A_{12,j} \) (\(A_{21,j} \)) significantly different from \(0 \) (e.g., via \(F \) test)?
Identification of causality from time series

Multivariate problem: given $n>2$ variables X_k,

X_i Granger-causes X_j if lagged observations of X_i help in prediction X_j when lagged observations of all other variables X_k are taken into account (cf. partial correlations)

\Rightarrow Multivariate (conditional) Granger causality

Problems: linearity, stationarity, unobserved variables are not considered

Many extensions:

• Nonlinear Granger causality
• Spectral Granger causality (fraction of total spectral power of X_1 at a given frequency f that is provided by X_2)
• Transfer entropy: conditional mutual information taking lags into account
Assessing multi-scale dynamics
EOF analysis

Original motivation: extract dominating variations from spatio-temporal fields of climate observations records

Linear PCA:

Diagonalization of lag-zero covariance matrix C of multivariate time series (matrix X)

\[
C = X^T X \quad \text{with} \quad C = U^T \Sigma U \quad \text{and} \quad \Sigma = \text{diag}(\sigma_1^2, \ldots, \sigma_N^2)
\]

- Compute correlation matrix of all variables
- Estimate eigenvalues and eigenvectors
- Eigenvectors: additive decomposition into principal components (weighted superpositions of original variables) with individual variances corresponding to associated eigenvalues

\Rightarrow spatial EOF patterns + index/score time series describing magnitude and sign of individual EOF modes
Singular spectrum analysis

Replace individual data “channels” by time-lagged versions of the same time series
⇒ Identification of distinct temporal variability patterns

Mathematical roots: time-delay embedding
⇒ Attractors of dissipative deterministic dynamical systems can be approximated from univariate time series by using “independent coordinates” in terms of time-shifted replications of the original data
⇒ Standard tool in nonlinear time series analysis

Relevant information:
• How many “dimensions” (variables) need to be used to model the observed dynamics? (number of relevant singular values)
• What are the associated relevant variability patterns (associated singular vectors)
Singular spectrum analysis

Example: Relevant dimensions of ENSO activity (Ghil et al., 2001)

Figure 2. Variations of the Southern Oscillation Index (SOI) between January 1942 and June 1999. Time on the abscissa is in calendar years, and SOI on the ordinate is normalized by its standard deviation.
Wavelet analysis

Widely applicable tool: wavelet analysis

- Straightforward generalization of classical spectral analysis: convolution of signal with scalable localized oscillatory function (mother wavelet)
 - Example: Morlet wavelet – sinusoidal with Gaussian envelope

\[
\psi_0(\eta) = \pi^{-1/4} e^{i\omega_0 \eta} e^{-\eta^2/2}
\]

- Discrete wavelet analysis: additive decomposition of time series into components in logarithmically spaced frequency bands
- Continuous wavelet analysis: filter with central frequency at any desired periodicity
Wavelet analysis

Example: wavelet spectrogram of Nino3.4 index *(Maraun, PhD thesis, 2006)*
Synchronization analysis

Mutual alignment of two or more (not necessarily regular) oscillatory signals

First described by Huygens in 1673 (synchronization of two pendulum clocks hanging on the same wooden beam)

Various types: complete, generalized, phase, lag, event synchronization
Phase synchronization

Classical approach for detecting phase synchronization:

1. Define phase variable from data (Hilbert or wavelet transformation, stroboscopic mapping,...)

\[\psi(t) = s(t) + j\tilde{s}(t) = A(t)e^{j\phi(t)} \quad \tilde{s}(t) = \pi^{-1}\text{P.V.} \int_{-\infty}^{\infty} \frac{s(\tau)}{t-\tau} d\tau \]

2. Compute time series of phase differences between two phase time series

3. Wrap the phase differences to the interval [0,2\pi]

4. Compute suitable statistics on wrapped phase differences (Rayleigh measure, standard deviation, Shannon entropy)

Alternative to 2-4: compute mutual information between phase time series (Palus 1997)
Phase synchronization

Example. Phase coherence between ENSO and Indian monsoon (*Maraun & Kurths, GRL, 2005*)
Cross-scale interactions

Idea (Palus, PRL, 2014): combine
- continuous wavelet analysis,
- phase synchronization analysis (decomposition into amplitude and phase variables) and
- Nonlinear interdependencies (mutual information)

⇒ Unveil cross-scale phase-amplitude (phase-phase, amplitude-amplitude) coupling in observed time series
Cross-scale interactions

Example: four long-term air temperature records from Central Europe (*Palus, PRL, 2014*)
Event synchronization

Common approach from neurosciences (spike train analysis from EEG recordings, Quian Quiroga et al., PRE, 2002) - normalized fraction of temporally close extremes observed at different spatial locations (EEG electrodes, climate data grid point)

Various (even more concepts) further extending this approach (e.g., spike train synchrony), commonly tailored to specific features of neuronal spike trains
Event synchronization

Grid point i

τ_{lm}^{ij}

Only used for τ_{lm}^{ij}

t^i_{l-1}

t^i_l - t^i_{l-1}

t^i_{l+1} - t^i_l

Grid point j

t^j_{m-1}

t^j_m - t^j_{m-1}

t^j_{m+1} - t^j_m

Reik V. Donner, reik.donner@pik-potsdam.de
Event synchronization: Definition

\[\theta_{lm}^{jk} = \min\left\{ t_{l+1}^j - t_l^j, t_l^j - t_{l-1}^j, t_{m+1}^k - t_m^k, t_m^k - t_{m-1}^k \right\} / 2 \]

\[c(j|k) = \sum_{l=1}^{s_j} \sum_{m=1}^{s_k} J_{lm}^{jk} \]

with

\[J_{lm}^{jk} = \begin{cases}
 1 & \text{if } \tau_{jk} < t_l^j - t_m^k < \tau^{jk} \\
 1/2 & \text{if } t_l^j - t_m^k = \tau^{jk} \\
 0 & \text{else,}
\end{cases} \]

\[Q_{jk} = \frac{c(j|k) + c(k|j)}{\sqrt{(s_j s_k)}} \]

Disadvantages:

- adaptive “local” definition of event proximity, tailored to events with approximately constant spacing in time - requires de-clustering in case of temporally close events
- no analytics, significance testing at most via Monte Carlo methods
Event coincidence analysis

Take one of the series as reference and count number of cases in which at least one event in the other series occurs within a given time window relative to the timing of the reference event

⇒ Asymmetric property (potential for establishing directionality statements)
⇒ Distinction between “trigger” and “precursor” tests, simple significance tests

Reik V. Donner, reik.donner@pik-potsdam.de
Example: Remote sensing – FPAR vs. ET extremes

<table>
<thead>
<tr>
<th>Sign of Anomalies</th>
<th>Index</th>
<th>SM Regime</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>T^-</td>
<td>FPAR/ET^-</td>
<td>VAC_a</td>
<td>energy-limited</td>
</tr>
<tr>
<td>T^+</td>
<td>FPAR/ET^+</td>
<td>VAC_b</td>
<td>energy-limited</td>
</tr>
<tr>
<td>T^+</td>
<td>FPAR/ET^-</td>
<td>VAC_c</td>
<td>transitional</td>
</tr>
<tr>
<td>T^-</td>
<td>FPAR/ET^+</td>
<td>VAC_d</td>
<td>transitional</td>
</tr>
</tbody>
</table>

Zscheischler et al., GRL, 2015

Reik V. Donner, reik.donner@pik-potsdam.de
Take home messages

• Climate data exhibit complex variability features

• Classical time series analysis methods are not capable of unveiling these features

• Nonlinearity: interdependencies maybe overlooked by linear analyses, use nonlinear similarity measures like mutual information instead

• Multi-scale variability: time-scale decomposition to identify relevant scales, study interdependence between (oscillatory) components at different scales

• Event based interdependency measures: relevance for extreme event and (discrete) impact studies